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Temperature corrections to conformal field theory?
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Abstract. We consider finite temperature dynamical correlation functions in the interacting delta-function
Bose gas. In the low-temperature limit the asymptotic behaviour of correlation functions can be determined
from conformal field theory. In the present work we determine the deviations from conformal behaviour at
low temperatures.
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1 Introduction

The calculation of finite temperature correlation functions
is a long-standing problem in the theory of integrable mod-
els. Apart from the obvious conceptual importance of the
problem there are many direct applications of the results
to experiments on quasi-1D materials like KCuF3 [1] or
CuBenz [2], which are described by integrable models. Fi-
nite temperature dynamical correlation functions in the
systems have been measured by neutron scattering and
nuclear magnetic resonance and it is highly desirable to
develop a method to calculate them exactly.

Important progress was made during the eighties when
it was realized that in gapless models conformal field the-
ory can be used to obtain the low-temperature asymp-
totics of dynamical correlation functions (see e.g. [3]).
However, models with a spectral gap as well as higher
temperatures in gapless models remain outside the scope
of the conformal approach.

In a remarkable further development it became
possible to determine the behaviour of static correla-
tors at finite temperatures through an ingenious map-
ping of integrable d-dimensional quantum theories to
d + 1-dimensional integrable classical statistical mod-
els [4]. However, dynamical correlation functions cannot
presently be calculated by this approach.

For integrable models with free fermionic spectra pow-
erful methods to calculate finite temperature dynamical
correlation functions have been available for some time
[5,6]. Very recently the method of [5] was successfully
extended to cases corresponding to interacting fermions
[7,8]. In particular, in [8] a formula describing the expo-
nential decay of correlations in the delta-function Bose gas
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at finite temperatures was presented. Said formula is im-
plicit in the sense that it is written in terms of solutions of
certain nonlinear integral equations. The purpose of the
present work is to analyze these integral equations by both
analytical and numerical methods and present explicit ex-
pressions for the correlation lengths describing the decay
of correlations.

The outline of the paper is as follows. In Section 2
we review some relevant facts on the delta-function Bose
gas. In Section 3 we study the special case of impenetra-
ble bosons, in which particularly simple expressions for
the correlation lengths are obtained at low temperatures.
In Section 4 we consider the general case of interacting
bosons and we conclude in Section 5.

2 Review of the δ-function Bose gas

The δ-function Bose gas is one of the paradigms of exactly
solvable strongly correlated many-body problems in one
spatial dimension. It describes N bosons interacting via
a repulsive δ-function potential of strength c > 0. The
Hamiltonian is

HN = −
N∑
j=1

∂2

∂x2
j

+ 2c
∑

N≥j>k≥1

δ(xj − xk). (1)

At the special value c =∞ the model describes noninter-
acting hard-core bosons and essential simplifications occur
in the exact solution. We refer to this case as “impenetra-
ble bosons”.

The model is solvable by Bethe Ansatz [9] and in what
follows we recall some ingredients of the exact solution in
order to define the quantities that enter into the expression
for the asymptotics of correlation functions.



560 The European Physical Journal B

2.1 Ground state and excitations

In momentum space a Pauli principle holds [10] and con-
sequently the zero temperature ground state is given by
a filled Fermi sea of negative energy pseudoparticles. The
physics of the model is conveniently described in terms of
a rapidity variable λ, which is related to the momentum
k by

k(λ) = λ+

∫ q

−q
θ(λ− µ)ρ0

t (µ) dµ , (2)

where θ(λ) = i ln
(
ic+λ
ic−λ

)
. The density ρ0

t (λ) of pseudopar-

ticles in the ground state is determined from the integral
equation

ρ0
t (λ) −

1

2π

∫ q

−q
K(λ, µ)ρ0

t (µ) dµ =
1

2π
· (3)

Here q is the rapidity corresponding to the Fermi momen-
tum kF and K(λ, µ) = 2c

c2+(λ−µ)2 . Excitations over the

ground state can be either particles or holes. The particle
energy as a function of the rapidity is given by

ε0(λ)−
1

2π

∫ q

−q
K(λ, µ)ε0(µ) dµ = λ2 − h , (4)

where h > 0 is the chemical potential. We note that the
excitation energy vanishes on the Fermi surface ε0(±q) =
0, which fixes the integration boundary q as a function of
the chemical potential h. The Fermi velocity is defined as
usual to be

vF =
∂ε(λ)

∂k(λ)

∣∣∣∣
λ=q

=
ε′0(q)

k′(q)
=

ε′0(q)

2πρ0
t (q)

· (5)

The derivative of momentum with respect to rapidity
on the Fermi surface

Z = 2πρ0
t (q) (6)

is called dressed charge and is related to the density of
states on the Fermi surface.

2.2 Asymptotics of correlation functions

The asymptotic behaviour of correlation functions at very
low temperatures can be determined from the exact finite-
size spectrum by conformal field theory techniques [5,11].
The result is found to be

〈ψ(0, 0)ψ†(x, t)〉T −−−−−→
x→∞
t→∞

exp

{
−

2∆+πT

vF
|x− vF t|

−
2∆−πT

vF
|x+ vF t|

}
. (7)

The conformal dimensions ∆± are related to the dressed
charge by

2∆+ = 2∆− =
1

4Z2
· (8)

In the framework of the Luttinger liquid approach these
results were obtained by Haldane in [12].

In [8] the following formula describing the exponen-
tial decay of correlations at any temperature was derived
from the determinant approach to quantum correlation
functions [5]

〈ψ(0, 0)ψ†(x, t)〉T −−−−−→
x→∞
t→∞

exp

{
1

2π

∫ ∞
−∞

dλ

2πρt(λ)

×|x− v(λ)t| ln

∣∣∣∣∣e
ε(λ)
T − 1

e
ε(λ)
T + 1

∣∣∣∣∣
}

=: exp (χ) .

(9)

The functions ε(λ), ρt(λ) and v(λ) are the finite-
temperature equivalents of the dressed energy, pseudopar-
ticle density and Fermi velocity defined above. They are
solutions of the following integral equations [13]

ε(λ) = λ2 − h−
T

2π

∫ ∞
−∞

dµ K(λ, µ) ln
(

1 + e−
ε(µ)
T

)
,

ρt(λ) =
1

2π
+

1

2π

∫ ∞
−∞

dµ K(λ, µ)
1

1 + e
ε(µ)
T

ρt(µ) . (10)

The velocity v(λ) is given by

v(λ) =
1

2πρt(λ)

∂ε(λ)

∂λ
· (11)

Note that for T → 0 these equations reduce to (4), (3)
and (5) respectively.

3 Impenetrable bosons

We first investigate the simpler case of impenetrable
bosons. Although the analysis of (9) simplifies greatly in
this case the results remain qualitatively valid even in the
interacting case. In the limit c→∞ (9) simplifies to [5]

〈ψ(0, 0)ψ†(x, t)〉T −−−−−→
x→∞
t→∞

exp

{
1

2π

∫ ∞
−∞

dλ |x− 2λt|

× ln

∣∣∣∣∣e
λ2−h
T − 1

e
λ2−h
T + 1

∣∣∣∣∣
}
, (12)

and we are left with performing a single integral. Expand-
ing the exponentially decaying part of the integrand we
obtain an expansion of (12) in terms of error functions
and exponential functions, which in turn yield an asymp-
totic low-temperature series on χ in powers of T . We need
to distinguish two cases.



F.H.L. Eßler et al.: Temperature corrections to conformal field theory 561

3.1 Space-like region x/2t >
√

h

After some elementary calculations we find the following
expansion for χ (as defined in (9))

χ = −
4xT

πvF

∞∑
m=0

(4m)!

(2m)!

(
T

4h

)2m

(1− 2−2−2m) ζ(2m+ 2)

+ O
(

exp(−x/2t−
√
h/T )

)
, (13)

where ζ(x) is the Riemann zeta-function. Note that this

expansion breaks down as we approach x/2t →
√
h. The

first few terms are

χ = −
xTπ

2vF

[
1 +

(
πT

v2
F

)2

+ 14

(
πT

v2
F

)4

+ 5049

(
πT

v2
F

)6

+ . . .

]
. (14)

The inverse correlation length thus has an asymptotic
power series expansion in odd powers of temperature for
T → 0. We also see that in the space-like regime there
is no exponential decay with respect to the time t at low
temperatures as the t-dependence only enters in the ex-
ponentially small corrections exp(const./T ).

3.2 Time-like region x/2t <
√

h

In the time-like regime we find that there are no power-law
corrections to the conformal result

χ = −
πtT

2
−

2tT

π
exp

(
−(h− x2/4t2)/T

)
+ . . . (15)

Thus, up to exponentially small corrections the conformal
result is exact in the time-like regime and there is expo-
nential decay of correlations with respect to t only at small
temperatures.

For general finite temperatures one needs to resort to
numerical integration of (12). If we define a correlation
length ξ(T, h, t

x
) by

χ = −Θ(x− vF t)
x

ξ(T, h, tx)
−Θ(vF t− x)

vF t

ξ(T, h, tx )
,

(16)

where Θ(x) is the Heaviside theta-function, we can study
the dependence of ξ on T and the “direction” t/x by de-
termining χ numerically. From the above low-temperature
analysis we already know that at very low temperatures ξ
becomes independent of t/x. In Figure 1 we plot the cor-
relation length ξ as a function of temperature for various
values of t/x for the special values of chemical potential
h = 1.

We clearly see the deviations from linear-T behaviour
as temperature increases. The dependence on t/x becomes
more pronounced at higher temperatures. In the regions
tvF � x and x � vF t the dependence on t/x disappears
as expected. We also see that the exponential decay of
correlations is fastest in the direction of the “light-cone”
x/t = vF .

0.0 1.0 2.0 3.0 4.0 5.0
temperature

0.0

1.0

2.0

3.0

1/
ξ

t/x=0.1

t/x=0.2

t/x=0.3

t/x=0.5

t/x=0.6

Fig. 1. Inverse correlation length as a function of temperature
for impenetrable bosons at h = 1.

4 Interacting bosons

We now consider the case of finite coupling constant
c < ∞. In order to derive an analytical low-temperature
expansion of the correlation length we first need to per-
form an (asymptotic) expansion of ε(λ), v(λ) and ρt(λ) in
powers of T .

4.1 Low temperature expansion of integral equations

The expansion of ε(λ) in powers of T is readily established
along the lines of [14]. We first note that the function ε(λ)
has precisely one zero for λ > 0 [5]. We denote the corre-
sponding value of the spectral parameter by qT . As ε(λ) is
a symmetric function this then implies that ε(±qT ) = 0.
From (10) and (4) we find

ε(λ)− ε0(λ) −
1

2π

∫ q

−q
dµ K(λ, µ)

(
ε(µ)− ε0(µ)

)
= −

T

2π

∫ ∞
−∞

dµ K(λ, µ) ln

(
1 + exp(−

∣∣∣∣ε(µ)

T

∣∣∣∣))
−

T

2π

∫ qT

q

+

∫ −q
−qT

dµ K(λ, µ) ln
1 + exp(− ε(µ)

T )

1 + exp(−| ε(µ)
T
|)
· (17)

The last two terms in (17) are easily evaluated by expand-
ing the integrand around±qT . The leading contribution to
the first term in (17) also comes from the regions µ = ±qT
and we again expand the integrand around these points
and perform the resulting integrals. This gives

ε(λ) − ε0(λ)−
1

2π

∫ q

−q
dµ K(λ, µ)

(
ε(µ)− ε0(µ)

)
= −

π

12ε′(q)
(K(λ, q) +K(−λ, q))T 2

+
ε′(qT )

4π
(K(λ, qT ) +K(−λ, qT )) (qT − q)

2 +O(T 3) .

(18)
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Setting λ = q in (17) we find that q − qT = O(T 2) so
that the last term in (17) does not contribute to O(T 2).
Putting everything together we then have

ε(λ) = ε0(λ)−
π

12ε0′(q)
T 2u(λ) +O(T 3) ,

u(λ) = K(λ, q) +K(−λ, q) +
1

2π

∫ q

−q
dµ K(λ, µ) u(µ) .

(19)

It immediately follows that

qT = q +
π

12

u(q)

[ε0′(q)]2
T 2 +O(T 3) . (20)

The finite-temperature corrections to the pseudoparticle
density T 2∆ρ(µ) = ρt(µ)− ρ0

t (µ) can be determined in a
similar way

∆ρ(λ) =
π

12

ρ0
t (q)

[ε0′(q)]2

{[
u(q)

2π
−
ε0′′(q)

ε0′(q)
+
ρ0
t
′
(q)

ρ0
t (q)

]
u(λ)

−w(λ)}+O(T ), (21)

with

w(λ) = K ′(λ, q) +K ′(−λ, q) +
1

2π

∫ q

−q
dµ K(λ, µ) w(µ) ,

(22)

where K ′(λ, q) = dK(λ, q)/dλ. Finally, the low-
temperature expansion for v(λ) is found to be

v(λ) =
ε0′(λ)

2πρ0
t (λ)

−
1

24ε0′(q)

u′(λ)

ρ0
t (λ)

T 2

−
ε0′(λ)∆ρ(λ)

2π[ρ0
t (λ)]2

T 2 +O(T 3) . (23)

4.2 Asymptotics of the correlator
at small temperatures

Having obtained the leading corrections (in temperature)
of ε(λ), ρt(λ) and v(λ) we are now in a position to deter-
mine the leading temperature correction to the conformal
result (7) for general values of the coupling c. In order to
do so we need to expand the integral in (9), which is of
the form

χ =
1

2π

∫ ∞
−∞

dλ f(λ) ln

∣∣∣∣∣e
ε(λ)
T − 1

e
ε(λ)
T + 1

∣∣∣∣∣ , (24)

where f(λ) = |x−v(λ)t|
2πρt(λ) . The leading contributions to I(T )

come from the vicinity of the points ±qT , where ε(λ) van-
ishes. Expanding f(λ) in powers of T , using (19), (21) and
(23), and integrating around ±qT we find

χ = AT +BT 3 +O(T 4) . (25)
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Fig. 2. Inverse correlation length as a function of temperature
at c = 1, h = 1.
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Fig. 3. Inverse correlation length for several values of c as a
function of temperature at h = 1.

We find that A reproduces the “conformal” result (7).
There is no correction to order T 2. B is a complicated
expression as it reflects the operator content of the theory
so that we give an explicit expression only in the case
x� vF t.

B = −
π3Z ′ε0′′(q)

8Z2(ε0′(q))4
−

π3Z ′
2

24Z3(ε0′(q))3
+

π3Z ′′

48Z2(ε0′(q))3

−
π3(ε0′′(q))2

8Z(ε0′(q))5
+
π2u(q)ε0′′(q)

24Z(ε0′(q))4
−

π2u′(q)

24Z(ε0′(q))3

+
π2u(q)Z ′

24Z2(ε0′(q))3
+
π3ε0′′′(q)

24Zε0′(q)
+
π2∆ρ(q)

Z2ε0′(q)
, (26)

where Z ′ = 2πρ0
t
′
(q) and Z ′′ = 2πρ0

t
′′
(q).

At higher temperatures we again resort to a nu-
merical solution of the relevant integral equations
and integrals. In Figure 2 we plot the inverse
correlation length (16) as a function of temperature for
c = 1 and h = 1.
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We obtain a qualitatively similar picture to the impen-
etrable case. Once again the exponential decay of corre-
lations is fastest in the direction x = vF t. However, the
dependence on t/x is more pronounced than in the im-
penetrable case. This is particularly clear in the space-like
regime.

5 Conclusions

We have studied the rate of exponential decay of finite-
temperature dynamical correlation functions of local fields
in the δ-function Bose gas. We have explicitly evaluated
corrections to conformal behaviour at low temperatures.
For impenetrable bosons the results are qualitatively
the same, and in addition we are able to get all the terms
in an asymptotic series for the low-temperature behaviour
of the rate of decay.

References

1. D.A. Tennant, S.E. Nagler, S. Welz, G. Shirane, K. Ya-
mada, Phys. Rev. B 52, 13381 (1995); D.A. Tennant, R.
Cowley, S.E. Nagler, A.M. Tsvelik, Phys. Rev. B 52, 13368
(1995); H. Schulz, Phys. Rev. Lett. 77, 2790 (1996); F.H.L.
Essler, A.M. Tsvelik, G. Delfino, Phys. Rev. B 56, 11001
(1997).

2. D.C. Dender, P.R. Hammar, D.H. Reich, C. Broholm, G.
Aeppli, Phys. Rev. Lett. 79, 1750 (1997); M. Oshikawa, I.
Affleck, Phys. Rev. Lett. 79, 2883 (1997); F.H.L. Essler,
A.M. Tsvelik, preprint cond-mat/9708208.

3. J.L. Cardy, in Les Houches Summer School 1988 (1988)
161; Conformal Invariance and Applications to Statistical

Mechanics edited by C. Itzykson, H. Saleur, J.B. Zuber
(World Scientific, Singapore, 1986).

4. M. Suzuki, Phys. Rev. B 31, 2957 (1985); T. Koma, Prog.
Theor. Phys. 78, 1213 (1987); M. Takahashi, Phys. Rev.
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(1997); G. Jüttner, A. Klümper, J. Suzuki, Nucl. Phys. B
486, 650 (1997).

5. V.E. Korepin, A.G. Izergin, N.M. Bogoliubov, Quantum
Inverse Scattering Method, Correlation Functions and Al-
gebraic Bethe Ansatz (Cambridge University Press, 1993).

6. E. Barouch, B.M. McCoy, M. Dresden, Phys. Rev. A 2,
1075 (1970); E. Barouch, B.M. McCoy, Phys. Rev. A 3,
786 (1971); E. Barouch, B.M. McCoy, Phys. Rev. A 3,
2137 (1971); A. Berkovich, J. Phys. A 24, 1543 (1991);
A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Phys.
Rev. Lett. 70, 1704 (1993).

7. T. Kojima, V.E. Korepin, N. Slavnov, Comm. Math.
Phys. 188, 657 (1997); V.E. Korepin, N. Slavnov, preprint
hep-th/9706147, N. Slavnov, “Asymptotics of the Fred-
holm determinant associated with the correlation functions
of the quantum nonlinear Schrödinger equation”, submit-
ted to Zap. Nauch. Sem. POMI.

8. V.E. Korepin, N. Slavnov, Phys. Lett. A 236, 201 (1997).
9. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963).

10. A.G. Izergin, V.E. Korepin, Lett. Math. Phys. 6, 283
(1991).

11. A. Berkovich, Nucl. Phys. B 356, 655 (1991); A. Berkovich,
G. Murthy, J. Phys. A 24, 1537 (1991); J. Phys. A 21, L395
(1988).

12. F.D.M. Haldane, Phys. Lett. A 81, 153 (1981).
13. C.N. Yang, C.P. Yang, J. Math. Phys. 10, 1115 (1969).
14. M. Takahashi, Prog. Theor. Phys. 50, 1519 (1973).


